

2024 Consumer Confidence Report for Public Water System

MONTGOMERY COUNTY UD 3

This is your water quality report for January 1 to December 31, 2024

Montgomery County Utility District No. 3 (MONTGOMERY COUNTY UD 3) provides: (1) groundwater purchased (or exchanged) from Montgomery County Utility District No. 4 sourced from two wells (both in the Jasper Aquifer) located in Montgomery County, Texas, and (2) groundwater produced at the Montgomery County Utility District No. 3 water plant sourced from two water wells (one in the Jasper Aquifer and one in the Catahoula Aquifer) located in Montgomery County, Texas.

For more information regarding this report contact:

Name - Philip Wright or John Wright at Hays Utility North Corporation (operating company, system business office).

Phone - 936-588-1166

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español (y para obtener una copia traducida de este informe), favor de llamar al teléfono (936)588-1166.

Definitions and Abbreviations

Definitions and Abbreviations

Action Level (AL):

Avg:

Level 1 Assessment:

Level 2 Assessment:

Maximum Contaminant Level or MCL:

Maximum Contaminant Level Goal or MCLG:

Maximum residual disinfectant level or MRDL:

Maximum residual disinfectant level goal or MRDLG:

MFL

Minimum reporting level or MRL

mrem:

na:

NTU

pCi/L

ppb or µg/L:

ppm:

ppq

ppt

Treatment Technique or TT:

The following tables contain scientific terms and measures, some of which may require explanation.

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

million fibers per liter (a measure of asbestos)

The measurement that is at or above minimum reporting levels

millirems per year (a measure of radiation absorbed by the body)

not applicable.

nephelometric turbidity units (a measure of turbidity)

picocuries per liter (a measure of radioactivity)

micrograms per liter or parts per billion

milligrams per liter or parts per million

parts per quadrillion, or picograms per liter (pg/L)

parts per trillion, or nanograms per liter (ng/L)

A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Opportunities for public participation

Opportunities for public participation in decisions that may affect the quality of the water include attendance at meetings of the Board of Directors of MONTGOMERY COUNTY UD 3, usually held on the third Monday of the month at 2:00 PM at the offices of Hays Utility North Corporation (operating company, system business office) located at 375 Lake Meadows Drive, Montgomery, Texas 77316. Sometimes, meetings are rescheduled (or special meetings are called). For information on upcoming Board meetings, consult notice(s) posted on the internet (<https://www.mcud3.com/>) or on the south face of the wall or fence around the storage enclosure adjacent to the security parking area south of and adjacent to the guard house at 100 April Sound Boulevard, Montgomery, Texas 77356 in Montgomery County, Texas. You may contact Philip Wright or John Wright, Hays Utility North Corporation (operating company, system business office), phone: (936)-588-1166, for information about water quality and Board meetings and to provide input into decisions that may affect the quality of the water.

Information about Source Water

MONTGOMERY COUNTY UD 3 provides (1) groundwater purchased (or exchanged) from Montgomery County Utility District No. 4 sourced from two wells (in the Jasper Aquifer) located in Montgomery County, Texas, and (2) groundwater produced from two water wells (one in the Jasper Aquifer and one in the Catahoula Aquifer) at the Montgomery County Utility District No. 3 water plant located in Montgomery County, Texas. Water from both sources is combined in the distribution system of MONTGOMERY COUNTY UD 3.

TCEQ completed assessments of MONTGOMERY COUNTY UD 3's source water, and results indicate that some of such sources are susceptible to certain contaminants. Consumers are notified that this information is available, and it can be obtained on the TCEQ's Texas Drinking Water Watch website (<https://dww2.tceq.texas.gov/DWW/>, under Water System Nos. TX1700116 and TX1700286) or by contacting Hays Utility North Corporation (operating company, system business office), phone 936-588-1166. A summary of the system's susceptibility to potential sources of contamination, using language provided by TCEQ, for each source is as follows:

Source water assessment summary for Montgomery County Utility District No. (Water System No. TX1700286)

System Susceptibility Summary											
Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochemical	Synthetic Organic Chemicals	Disinfection Byproduct	Volatile Organic Chemicals	Drinking Water Contaminant Candidate	Other	
---	----	MEDIUM	----	MEDIUM	-----	-----	-----	LOW	----	MEDIUM	
Entry Point Susceptibility Summary											
Entry Point ID	Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochemal	Synthetic Organic Chemicals	Disinfection Byproduct	Volatile Organic Chemicals	Drinking Water Contaminant Candidate	Other
001	---	----	MEDIUM	----	MEDIUM	-----	-----	-----	----	----	MEDIUM

Source water assessment summary for Montgomery County Utility District No.3 (Water System No. TX1700116)

System Susceptibility Summary											
Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochemical	Synthetic Organic Chemicals	Disinfection Byproduct	Volatile Organic Chemicals	Drinking Water Contaminant Candidate	Other	
---	----	MEDIUM	----	MEDIUM	-----	-----	-----	----	----	MEDIUM	

Entry Point Susceptibility Summary											
Entry Point ID	Asbestos	Cyanide	Metals	Microbial	Minerals	Radiochemal	Synthetic Organic Chemicals	Disinfection Byproduct	Volatile Organic Chemicals	Drinking Water Contaminant Candidate	Other
001	---	----	MEDIUM	----	MEDIUM	----	----	----	----	----	MEDIUM

The sampling requirements for the MONTGOMERY COUNTY UD 3 water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report, and the data presented in this report is from the most recent testing done in accordance with the regulations (but not older than five years). For more information on source water assessments and protection efforts at our system contact: Philip Wright or John Wright, Hays Utility North Corporation (operating company, system business office), phone 936-588-1166

Lead and Copper Test Results*	Date Sampled	MCLG	Action Level (AL)	90th Percentile**	# Sites Over AL	Range of Tap Sampling Results*	Units	Violation (Y/N)	Likely Source of Contamination
Copper	07/27/2022	1.3	1.3	0.52	0	0.0098 – 0.52	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	07/27/2022	0	15	9.3	1	.62 – 9.4	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

* Note: Water samples for lead and copper testing were obtained on customer premises after it was delivered from the distribution system of MONTGOMERY COUNTY UD 3. In the distribution system, water purchased (or exchanged) from MONTGOMERY COUNTY UTILITY DISTRICT NO. 4 was combined with water produced at the MONTGOMERY COUNTY UTILITY DISTRICT NO. 3 water plant. Consumers are notified that complete lead tap sampling data are available for review at the Hays Utility North Corporation (operating company, system business office), phone 936-588-1166 and may be accessed by contacting that office at that phone number.

** This is the 90th percentile concentration of the most recent round(s) of sampling.

Lead Service Line Inventory Statement. A lead service line inventory has been prepared, including both system-owned and customer-owned service lines. It serves as a crucial foundation for water systems to address a significant source of lead in drinking water. To access the inventory, contact: Philip Wright or John Wright, Hays Utility North Corporation (operating company, system business office), phone 936-588-1166. See, also, the "Lead and Copper Test Results" table, above. Complete lead tap sampling data are available for review at the Hays Utility North Corporation (operating company, system business office), phone 936-588-1166.

Informational statement about lead in drinking water and its effects on children. Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

MONTGOMERY COUNTY UD 3 is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact: Philip Wright or John Wright, Hays Utility North Corporation (operating company, system business office), phone 936-588-1166. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <http://www.epa.gov/safewater/lead>

2024 Water Quality Test Results

**Information about Groundwater Purchased (or exchanged) from MONTGOMERY COUNTY UTILITY DISTRICT NO. 4
(data provided by MONTGOMERY COUNTY UTILITY DISTRICT NO. 4)**

Disinfection By-Products	Collection Date	Highest Level Detected*	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	1 (rounded)	1.1 - 1.1	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2024	10	10 - 10	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Barium	09/28/2022	0.133	0.133 - 0.133	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	04/10/2023	0.15	0.15 - 0.15	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Beta/photon emitters	04/20/2021	4.6	4.6 - 4.6	0	50	pCi/L*	N	Decay of natural and man-made deposits.
Combined Radium 226/228	04/20/2021	2.63	2.63 - 2.63	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	04/20/2021	3.7	3.7 - 3.7	0	15	pCi/L	N	Erosion of natural deposits.

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine Residual, Free	2024	1.56	0.24 – 2.87	4	4	Mg/l	ppm	Water additive used to control microbes.

Unregulated Contaminants*	Collection Date	Average	Range of concentrations at which detected(range of monitoring results)	MRL	MCL	Units
Bromodichloromethane	05-24-2024 02-11-2023 09-28-2022 09-02-2021 09-01-2020	2.52	1.0 – 4.7	1.0	na	ppb
Bromoform	05-24-2024 09-28-2022 09-02-2021	6.27	3.5 – 9.6	1.0	na	ppb
Dibromochloromethane	05-24-2024 02-11-2023 09-28-2022 09-02-2021 09-01-2020	4.42	1.2 – 7.6	1.0	na	ppb
Chloroform	09-02-2021 09-01-2020	1.5	1.2 – 1.8	1.0	na	ppb

*Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. The unregulated contaminants displayed in this table are those: (i) which were found and measured at or above the applicable minimum reporting levels (MRL) and (ii) for which monitoring is required by 40 CFR §141.40, and found in 30 TAC §290.275(4) (except *Cryptosporidium*). Monitoring data for unregulated contaminants are available. To access the data, contact the Hays Utility North Corporation (operating company, system business office), phone 936-588-1166

***Information about Groundwater Produced at the MONTGOMERY COUNTY UTILITY DISTRICT NO. 3 Water Plant
(except as noted)***

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation (Y/N)	Likely Source of Contamination
0	1 positive monthly sample.	1	1	0	N	Naturally present in the environment.

Disinfection By-Products	Collection Date	Highest Level Detected*	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Total Trihalomethanes (TTHM)	2024	6 (rounded)	5.5 - 5.5	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Arsenic	08/23/2022	3	3 - 3	0	10	ppb	N	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	08/23/2022	0.113	0.113 - 0.113	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	04/10/2023	1.41	1.41 - 1.41	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2024	0.05	0 - 0.05	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	08/23/2022	3.9	3.9 - 3.9	50	50	ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Beta/photon emitters	03/11/2021	6.4	6.4 - 6.4	0	50	pCi/L*	N	Decay of natural and man-made deposits.

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine Residual, Free	2024	1.56	0.20 – 3.84	4	4	Mg/l	ppm	Water additive used to control microbes.

Unregulated Contaminants*	Collection Date	Average	Range of concentrations at which detected(range of monitoring results)	MRL	MCL	Units
Bromodichloromethane	3-26-2024 06-16-2023 08-23-2022 07-14-2021 03-11-2021 09-02-2020	2.14	1.1 – 4.4	1.0	na	ppb
Bromoform	3-26-2024 06-16-2023 08-23-2022 07-14-2021 03-11-2021	3.02	1.1 – 5.4	1.0	na	ppb
Dibromochloromethane	3-26-2024 06-16-2023 08-23-2022 07-14-2021 03-11-2021 09-02-2020	2.32	1.0 – 4.9	1.0	na	ppb
Chloroform	06-16-2023 08-23-2022 07-14-2021 03-11-2021 09-02-2020	1.6	1.0 – 2.7	1.0	na	ppb

*Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. The unregulated contaminants displayed in this table are those: (i) which were found and measured at or above the applicable minimum reporting levels (MRL) and (ii) for which monitoring is required by 40 CFR §141.40, and found in 30 TAC §290.275(4) (except *Cryptosporidium*). Monitoring data for unregulated contaminants are available. To access the data, contact the Hays Utility North Corporation (operating company, system business office), phone 936-588-1166